

Modelling and simulation of the Stralis Bonanza A36-HE hydrogen-electric aircraft emission free aircraft

August 20th 2024

Dr Mark Broadmeadow

Propulsion Lead, Stralis Aircraft

- Stralis Aircraft overview
- iMOVE CRC project
- Bonanza A36-HE technology demonstrator
- Modelling the Bonanza A36-HE
 - System architecture
 - Propulsion system overview
 - Modelling approach
 - Hydrogen and fuel cell system modelling
- Outcomes
- Insights
- Challenges, opportunities & next steps

Stralis Aircraft overview

Our mission

Stralis will deliver 50,000 x 50-seat hydrogen-electric aircraft by 2050

50% cheaper to operate Compared to fossil fuel powered alternatives.

The SA-1 only emits water vapour.

Roadmap

Our team

Our founding team has a track record of rapidly developing aircraft for leading programs worldwide.

Bob Criner Co-founder & CEO **Stuart Johnstone** Co-Founder & CTO

Steven Holden Chief Aircraft Engineer Dr Emma Whittlesea Head of Partnerships **Dr Mark Broadmeadow** Prop. Control System Lead

AIRBUS

אוחפם ני<u>ט</u>

Gulfstream

Grant Hiller **Propulsion Lead**

Elec. Engineering Lead

Luciano Serra Head of Certification

Steffen Geries

000

Dr Andrew Dicks Fuel Cells Lead

Tom Benedetti Prop. Test Systems Eng.

Hydrogen Flight Alliance (HFA)

ALLIANCE

Ensuring Australia's leading role in the aviation industry's transition towards net-zero by 2050

Green hydrogen energy and aircraft integration, in and around the airport and airspace. Aircraft design, certification, manufacturing, maintenance, ground handling, refuelling and flight ops.

 \rightarrow

iMOVE CRC project

- Six-month collaboration between Stralis and QUT
- Conducted over three, 2-month phases
 - Increasing model complexity and fidelity

Objectives

- 1. Validate the design requirements for the Bonanza A36-HE
- 2. Inform the design of systems and components (trade studies)
- 3. Provide a plant model as the basis for developing control software
- 4. Provided a basis for Hardware-in-the-Loop (HiL) testing

Australian Government

Department of Industry, Science and Resources

STRALIS

Bonanza A36-HE technology demonstrator

- Beechcraft Bonanza A36 retrofitted with Stralis hydrogen-electric propulsion system
- 26 kg LH₂ carried in wing-tip tanks
- 180 kW electric motor with integrated drive
- 2x 110 kW HT-PEM fuel cells
- 10,000 ft operating altitude
- 156 kt cruise speed
- 500 km range

Bonnie & Clyde

Flying test bed "Bonnie"

Iron-bird "Clyde"

Modelling the Bonanza A36-HE

System architecture

Modelling and simulation of the Stralis Bonanza A36-HE hydrogen-electric aircraft

Propulsion system overview

- Simulink time-domain model
- Ultimately suitable for real-time simulation
 - Fixed time step
 - Only components that support code generation
- Incremental approach
 - Subset of systems initially; systems added over time
 - Analytical models transitioned to physical Simscape networks
- Modelled based on public domain component data
 - Individual components and systems validated using test benches
 - Overall model validated using aircraft mission profile

- Plant takes control action as input and produces state signals as output
- Control in separate top-level subsystem
 - Facilitates future code generation
- Pilot modelled in separate subsystem
- Cockpit visualization
- Visualisation subsystem for analysis/debugging
- Simulink buses used for signal propagation
 - Rapid prototyping and addition of signals

- Simscape busses used to collect physical networks into single ports
 - LV electrical

Propulsion system model

Single coupled Simscape physical network, 10 ms simulation timestep

- Hydrogen: Two-phase fluid network (hydrogen)
- Electrical: HV (800 V), LV (28 V)
- Cathode air supply: Gas (air) and moist air (nitrogen, oxygen, water vapor) fluid networks
- High-temperature cooling: Thermal liquid (water)
- Low-temperature cooling: Thermal liquid (water/ethylene glycol)
- Air cooling: Gas (air)
- Motor & propeller: Mechanical

Hydrogen conditioning

Fuel cell: Electrical

Fuel cell: pressure & temperature

https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/review20/fc320_hibbs_2020_o.pdf https://data.epo.org/publication-server/rest/v1.0/publication-dates/20220928/patents/EP4064397NWA1/document.pdf

Fuel cell: anode & cathode

Fuel cell: anode & cathode

Turbocharger: compressor modelling

Compressor map matching

Compressor operating point

VII

MAX RPM

.60

.53

.38

Garrett G40-900 84 trim T4 1.06 A/R. https://www.garrettmotion.com/wp-content/uploads/2022/07/Garrett Performance Catalog Volume-9 2022.pdf

.68

Turbocharger: turbine modelling

Turbine operating point (vs. Garrett G40-900 84 trim T4 1.06 A/R)

Garrett G40-900 84 trim T4 1.06 A/R. https://www.garrettmotion.com/wp-content/uploads/2022/07/Garrett_Performance_Catalog_Volume-9_2022.pdf

Model features

Environment

- Air temperature, pressure with altitude
- Weather (wind speed, air temperature)
- Route (latitude, longitude, heading)

Aircraft

- Lift & drag, including flaps & gear position
- 3-degree-of-freedom dynamics
- Longitudinal stability
- Dynamic fuel mass
- Single point gear interaction with ground

Visualization

- Full analogue of cockpit with instruments
- 3D visualization with capacity for satellite imagery

Propulsion

- LH₂ tank with electric heater
- Hydrogen conditioning from FC coolant
- Turbocharger based on manufacturer performance maps
- HV-HV and HV-LV DC/DC converters
- Propulsion motor with efficiency map and voltage sensitivity
- Propeller model based on manufacturer performance map
- Electrically actuated propeller pitch
- Low- and high-temperature coolant loops
- Radiator modelling including ram air and propeller wash

Cockpit visualisation

3D visualisation

Simulation outputs

Modelling and simulation of the Stralis Bonanza A36-HE hydrogen-electric aircraft

- 1. Fixed pitch vs constant speed propeller
 - Determined early in the project that a fixed pitch propeller would not be sufficient to meet the target performance of the aircraft
 - Implemented constant speed propeller with electric actuator for final model
- 2. Fuel cell voltage constraints
 - Pressure/temperature sensitivity of fuel cell voltage highlighted voltage constraints
 - Fuel cell must be at temperature for take-off; may need engine run-up under brakes
- 3. Fuel cell thermal management during idle/taxi
 - Determined that under low power conditions, cathode air supply alone exceeded fuel cell cooling requirements
 - Required cathode air flow to be throttled for idle/taxi (via turbo)

Challenges, opportunities, and next steps

- Large model; single Simscape physical network & solver
 - Runs better than real-time, but barely
 - Solution of initial condition is fragile
 - Small changes can result in crashes
 - Some issues of scale (Simulink to Simscape signal conversion)
- Available input data
 - Fuel cell characteristics
 - Sensitivity to oxygen partial pressure
 - Independent anode/cathode pressures
 - Turbine maps
 - Heat exchangers
 - Aircraft aerodynamics
- DC-DC converter modelling
 - Issues with initial condition solution
 - Missing current/power limit behavior

- Partition model
 - Multiple, smaller, physical networks with independent solvers
 - Opportunity to set different timescales for different modelling domains
 - Simulation can leverage parallel processing
- Fuel cell
 - Model sensitivity to oxygen partial pressure in cathode
 - Voltage behavior during startup/shutdown
- Decouple visualization from simulation
 - Simulation data playback
 - 3D scene visualisation

- Improve model performance, targeting hard real-time simulation
- Enhance fuel cell model
 - Model sensitivity to oxygen & water vapor partial pressures
 - Model anode and cathode pressure sensitivity independently
- Revisit aircraft modelling
 - Flight control surfaces
 - Longitudinal stability
- Trade studies to support design process
 - Parameter sweeps
 - Mission profiles
 - Optimisation studies

